Problem 9

Use the result of Problem 7(a) to find the sum of the series $\sum_{n=1}^{\infty} \arctan \left(2 / n^{2}\right)$.

Solution

The result that was proven in Problem 7(a) is this.

$$
\arctan x-\arctan y=\arctan \frac{x-y}{1+x y}
$$

where $x y \neq-1$. The series whose sum we have to find is the following.

$$
\sum_{n=1}^{\infty} \arctan \frac{2}{n^{2}}
$$

Since we just have one arctan term in the summand, we'll use the formula from Problem 7(a) to break it into two terms. Thus, we set

$$
\begin{aligned}
x-y & =2 \\
1+x y & =n^{2}
\end{aligned}
$$

and solve for x and y with substitution. Doing this gives $x=n+1$ and $y=n-1$. By the formula from Problem 7(a), then, we have

$$
\arctan \frac{2}{n^{2}}=\arctan (n+1)-\arctan (n-1)
$$

so the series we have to evaluate becomes

$$
\sum_{n=1}^{\infty}[\arctan (n+1)-\arctan (n-1)]
$$

Write out the first five terms of it.

$$
\begin{aligned}
\sum_{n=1}^{\infty}[\arctan (n+1)-\arctan (n-1)]=\underbrace{\arctan 2-\arctan 0}_{n=1} & +\underbrace{\overline{\arctan 3-\arctan 1}}_{n=2}+\underbrace{\overline{\arctan 4}-\arctan 2}_{n=3} \\
& +\underbrace{\arctan 5-\overline{\arctan 3}}_{n=4}+\underbrace{\arctan 6-\overline{\arctan 4}}_{n=5}
\end{aligned}
$$

Every value of n gives us two terms. The first term of n always cancels with the second term of $n+2$. Hence, this is a telescoping series, which we evaluate by calculating a limit.

$$
\begin{aligned}
\sum_{n=1}^{\infty}[\arctan (n+1)-\arctan (n-1)] & =-\arctan 0-\arctan 1+\lim _{n \rightarrow \infty} \arctan n+\lim _{n \rightarrow \infty} \arctan (n+1) \\
& =0-\frac{\pi}{4}+\frac{\pi}{2}+\frac{\pi}{2} \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \arctan \frac{2}{n^{2}}=\frac{3 \pi}{4}
$$

